
0

JOINT SIMULATION SYSTEM (JSIMS) MARITIME

SOFTWARE REQUIREMENTS SPECIFICATION (SRS)
NP PHASE

JM-SRS-NP-0001-R0C2
3 June 1997

PREPARED BY:
 Dave Bingham, Jay Caldwell, and Ralph Nebiker
JSIMS Maritime Domain Design IPT
PREPARED FOR:
Dan Bacon
JSIMS Maritime Domain Design IPT

1

COORDINATION/APPROVAL SHEET
FOR

JSIMS MARITIME
SOFTWARE REQUIREMENTS SPECIFICATION (SRS)

NP PHASE

DEVELOPED BY:___________________________DATE: ___________

OBJECT ANALYSTS
JSIMS Maritime Domain Design IPT
Dave Bingham, Jay Caldwell and Ralph Nebiker

APPROVED BY:___________________________DATE: ___________

IPT Leader
JSIMS Maritime Domain Design IPT
Dan Bacon

APPROVED BY:___________________________DATE: ___________

JSIMS Maritime Systems Engineer
JSIMS Maritime
Laura Knight

2

RECORD OF CHANGES

Version Num-
ber

Date Description

1.0
R0C1
R0C2

4/24/97
5/1/97
6/2/97

Original document.
Incorporate SRR Comments
Correct traceability and qualification requirements

3

1.0 SCOPE
The scope of this effort is to specify the functionality of Modeling and Simulation (M&S) software
for JSIMS Maritime Wargaming and Training, Navy Prototype (NP) phase. A framework shall be
developed with which to do this and with which to produce new models and simulations. No clas-
sified software shall be developed, although data the software uses can be classified. Human Sys-
tem Integration (HSI) shall be accomplished through the use of a separate Work Station, housing
the necessary Human Computer Interface (HCI) software and supporting utilities. The HCI soft-
ware shall be hosted on TAC-4 hardware for the Geo-Tactical Display and the simulation objects
software shall be hosted on Sun SPARC hardware or equivalent hardware for the simulation mod-
els. This phase of the development, NP, is to demonstrate the process for developing simulation
objects and as such the scope of the software requirements are limited to a few objects. The fol-
lowing objects shall be implemented:
1. Ship Hull: Generic surface ship hull that shall be capable of motion.
2. FA18C: Generic FA18C aircraft without weapon or sensor systems, but capable of motion.
3. Red Aircraft. Generic Opposing forces aircraft without weapon or sensor systems, but ca-
pable of motion.
4. Identification Friend or Foe (IFF): Generic IFF system capable of interrogation which can
be associated with the ship hull, and capable of responding to interrogation and being associated
with FA18C and Red Aircraft objects. The IFF system shall be capable of identification of friendly
tracks which properly respond to interrogation.

1.1 IDENTIFICATION

This specification produces a Framework for Wargaming and Training Simulations. It is identified
by JM-SRS-NP. This requirements document describes the first version and the initial release.
The basic purpose of the prototype development is to exercise and evaluate JSIMS Maritime sys-
tems engineering processes to the maximum extent practicable so as to improve those processes
and ensure that they are fully understood by those who shall be responsible for executing them.
Henceforward, this phase shall be referred to as JSIMS Maritime Software Segment, Navy Proto-
type, (JMSS NP)

1.2 SYSTEM OVERVIEW
The purpose of the JSIMS Maritime prototype development process are as follows:

1. Exercise the planned methodologies for the development of JSIMS Maritime mission space
objects to the maximum extent possible. This includes integration of USMC Development Agent
activities with JSIMS Maritime, interaction with the Defense Intelligence Agency (DIA) and other
JSIMS Maritime Development Agents, and interaction with the JSIMS JPO and I&D contractor.
(If the prototype development process interferes with resources that must be applied to perform
JSIMS Maritime tasks needed to be directly applied to JSIMS development efforts, the prototype
development process shall be scaled back accordingly.)

2. Test the communications methods that are planned to be used to execute JSIMS Maritime
development efforts, including e-mail, teleconferences, web sites, and when available, the Enter-
prise Information Management System (EIMS).

3. Evaluate alternative tools which can be applied in JSIMS Maritime development efforts.

4

4. Exercise the JSIMS Maritime technical approach in a manner that is believed to be the most
effective from the JSIMS Maritime viewpoint.

5. Complete the prototype development in about three months.

1.3 DOCUMENT OVERVIEW
This document defines and records the system-wide requirements decisions (that is, decisions
about the systems behavioral design and other decisions affecting the selection of system compo-
nents). The result will include all applicable items in the system-wide requirements. Requirements
pertaining to interfaces and databases will be included in this SRS rather than in interface design
descriptions (IRSs) and requirements pertaining to databases will also be included in the SRS rath-
er than in database requirements descriptions (DBDDs). This document will specify all require-
ments and provide for demonstrating this fulfillment through qualification testing. This document
will further define and record the architectural requirements of the system (identifying the com-
ponents of the system, their interfaces, and a concept of execution among them) and the traceability
between the system components and system requirements as expressed in the Software Develop-
ment Plan (SDP). The result will include all applicable items in the architectural requirements and
traceability sections. This document will also define and record the architectural requirements of
the JMSS NP (identifying the software components comprising the JMSS NP JMSS NP , their in-
terfaces, and a concept of execution among them) and the traceability between the software com-
ponents and the JMSS NP requirements. The result will include all applicable items in the
architectural requirements and traceability sections of the Software Design Description (SDD),
design pertaining to interfaces will be included in SDDs. System requirements will be interpreted
to mean the system requirements identified for this build. For purposes of this document, a soft-
ware component will be construed to mean Object Class. This system is UNCLASSIFIED and will
not be CLASSIFIED until the inclusion of actual data that may be classified. At such time the sys-
tem will be operated in a benign environment and as such no special software features are required.
There are no privacy issues with respect to this development.

5

2.0 REFERENCED DOCUMENTS
a Software Development Plan (SDP) for Joint Simulation System (JSIMS) Maritime Software

Segment (JMSS) REVISION DATE: 31 January 1997; available from Jeff Wallace, NRaD
Code D44202, San Diego, CA 92152; 619.553.6809

b .Joint Simulation System Maritime Prototype Process Model Exposition (Build NP WBS
1.2.2.2) Draft Version 1.04 April 1997; available from Ralph Nebiker, NRaD Code D44202,
San Diego, CA 92152; 619.553.3971

c SOFTWARE DEVELOPMENT AND DOCUMENTATION MIL-STD-498 5 December
1994 Superseding DOD-STD-2167A 29 February 1988 DOD-STD-7935A 31 October 1988
DOD-STD-1703(NS) 12 February 1987

d Shlaer, S. and S. J. Mellor, Object Life Cycles: Modeling the World in States, 251 p., Yourdon
Press, Englewood Cliffs, NJ, 1992.

e Leonard, G.E., L. J. Peterson and J. F. Caldwell, using the Model-View-Controller Framework
as a Simulation Development Methodology, proceedings of the Object-Oriented Simulation
Conference (OOS ô97)ó, J. W. Wallace, T. G. Beaumariage and Y. Dessouky (eds.), Phoenix,
January 1997, pp. 79-84.

f LaLonde, W. R. and J. Pugh, 1991. Inside Smalltalk Volume II. Prentice Hall, Englewood
Cliffs, N.J.

g Shlaer, S. and S. J. Mellor, The Shlaer-Mellor Method, Technical Report pf.pb.S075, Project
Technology, Inc., 1996

h NP Collective System and Task List, Ship (WBS 1.2.1.1) Rev 1.0, 12 March 1997; available
from Ralph Nebiker, NRaD Code D44202, San Diego, CA 92152; 619.553.3971

i NP Collective System and Task List, Aircraft (WBS 1.2.1.1) Rev 2.0, 12 March 1997; avail-
able from Ralph Nebiker, NRaD Code D44202, San Diego, CA 92152; 619.553.3971

j System/Task Description (SD/TD), Ship (WBS 1.2.1.1) Rev 1.0, 6 March 1997; available from
Ralph Nebiker, NRaD Code D44202, San Diego, CA 92152; 619.553.3971

k System/Task Description (SD/TD), Aircraft (WBS 1.2.1.1) Rev 1.0, 12 March 1997; available
from Ralph Nebiker, NRaD Code D44202, San Diego, CA 92152; 619.553.3971

6

3.0 REQUIREMENTS
This SRS for the NP Build of the JMSS is a specification of the capabilities to be provided for this
Build. For purposes of understanding, the SRS constitutes the specification of the JMSS NP as
described in the Object Information model (OIM). This OIM specifies the object classes to be im-
plemented and the associations and attributes of the object classes. Computer Software Compo-
nents (CSC)s are the object classes and the Computer Software Units (CSU)s are the methods
described in the Action Data Flow Diagrams (ADFD)s. JMSS NP will include a family of work
stations interfacing with the Simulation Engine and servers via a local area net (LAN). The soft-
ware implementation framework is the Model View Controller (MVC) paradigm of SmallTalk.
The models will receive input from an associated controller. Model views will be provided to in-
terface with the Human Computer Interface (HCI)/Map Servers.

3.1 REQUIRED STATES AND MODES
The basic architecture of the JSIMS Maritime development and test environment, depicted in Fig-
ure 1, will be a workstation interfacing with the Simulation engine and servers via a local area net
(LAN). The NP Phase will not employ any remote users. The Human System Integration (HSI)
is accomplished by the User terminals and employ a Geographical Tactical Display as well as a
textual display through separate x-windows or separate terminals. This will constitute the Human
Computer Interface (HCI) for the User. No states or modes are required. As a simulation system,
the system is always in a single state having a single mode.

LAN WAN

Local

Maps, HSI, etc.

TAC 4

User

User

Remote

User

User

Simulation Engine

Router

7

FIGURE 1. JMSS NP SYSTEMS ARCHITECTURE

The software implementation framework utilizes the Model-View-Controller (MVC) architecture
of SmallTalk (See Figure 2). The models receive input from associated controllers and provide
data for the views which interface with the HCI/Map Servers. External users or models will inter-
act with the simulation for monitoring and control of the simulation, (later phases/builds). The
Shlaer-Mellor Method (Refs. d, g) applied to the architecture of Figure 1 produces an integrated
set of models which can be executed for verification, when using a model compiler. A model com-
piler will not be used in JMSS NP. Using this methodology, the design approach produces a sys-
tem design through a translation of the analysis models.

FIGURE 2. MODEL/VIEW/CONTROLLER SOFTWARE ARCHITECTURE

The Domain Chart of Figure 3 shows a partitioning of the architecture of Figure 1 into distinct do-
mains which can be independently developed through the Shlaer-Mellor Method. Each of the el-
lipses represents a distinct domain. The arrows indicate client-server relationships between the
domains. For instance, both the Human Computer Interface and theNP Maritime Operations Do-
mains are clients of the Network/LAN Domain which services them and allows communications

Controller
User Input

Device
Interaction

View
Display

Layout and
Interaction

Model
Application

Domain
and Behavior

Input Flow Information Flow

View Messages

Dependent
change

messages

Dependent
change

messages

Model Access and
Editing Messages

External
User/Model

8

to proceed between them. The implementation domains will be implemented with government-
off-the-shelf (GOTS) and commercial-off-the shelf (COTS) software. The service domains will
likewise be implemented with COTS and GOTS hardware and software. The HCI will be partially
GOTS furnished, partially COTS furnished, and will require some development in the C language.
The NP Maritime Operations is the system to be developed.
.

FIGURE 3. JMSS NP DOMAIN CHART

Human System Integration (HSI) is a component in the subsystem that will provide the access to
the simulation model for viewing and controlling. This is shown as the Human Computer Interface
(HCI) in Figure 3. There will be two views, geographical; showing the location and identification
of the objects and textual; showing and providing input to the simulation model to specify the ob-
jects to be instantiated and the objects to be viewed. The output will also be provided in tabular
form for the list of objects currently being tracked and viewed. The HCI is composed of four sub-
systems identified as the Geo-Tactical Display Module, the Status Board Module, the Order Pro-
cessor Module, and the User Input Module. The Geo-Tactical Display Module manages the
displaying of the entities of interest on a map display. The Status Board Module generates several
formatted text displays of the status of entities of interest, including weapons remaining, position,
bearing, heading, speed, etc. The HCI is considered non-deliverable software and is used for unit
testing and for integration and test. As such, its design and operation will be included in an appen-
dix to the software Desing Description (SDD).

3.2 JMSS NP CAPABILITY REQUIREMENTS
The OIM describes the scope of the JMSS NP . The Object Classes are the CSCs and the resultant
CSUs are described in the ADFDs through the State Transition Diagrams (STD)s of each object
class. The STDs specify the behavior of each of the object class. ADFDs are not created for every
state. If the processing in the state is obvious, then a separate ADFD is not generated. If the def-
inition of the processing can be explicitly defined in the process "bubble" of the ADFD, then a pro-
cess Specification is also not required. Duplicate named events do not carry titles on both events,

NP Maritime
Operations

 HCI

RTI

9

therefore an event that does not have a title will be found elsewhere on the STD. The external in-
terfaces will be specified in the Object Communication Model (OCM) later in the specification.

FIGURE 4. JMSS NP OBJECT INFORMATION MODEL (OIM)

3.2.1 SHIP HULL

There shall be only one ship hull object class. It shall be the only object “having a” sensor(s) ca-
pable of detection; an IFF interrogator/receiver. It shall be capable of motion, of detecting both
aircraft objects, and other ships. It shall have an” IFF transponder capable of responding to IFF
interrogations from other ships. See below for descriptions of the Ship Hull Object Class.

* Ship ID R
 Current Vector
 Ordered Vector
 Position Time
 Max Speed
 Min Speed
 Acceleration
 Slow Maneuver Speed
 Max Rudder

Ship (S)

* Track ID
* Ship ID R
 Target Vector
 IFF Mode
 Track Status
 Target Type
 Target ID R

Track (T) A

* AC ID R
 Type
 Current Vector
 Ordered Vector
 Climb Vector
 Descent Vector
 Accel Vector
 Position Time
 Max Speed
 Min Speed

Aircraft (AC)

Red A/C (AC-R)

FA-18 (AC-US)

c cR1

Is Detected By

Detects

tracks

AC Type

* ID
 OnOff State

IFF Interrogator
(IFF-I)

* ID
 Type
 OnOff State
 Reply List
 Modes

IFF Transponder
(IFF-T)

R2

is onboard

contains

R5

carries

is onboard

c

R4

interrogates

responds to

R3is onboard

contains

c

R6

updates

is updated by

Blue
Transponder

Red
Transponder

Ship
Transponder

Transponder Type

c
R7

is created by

creates

c c

R8

Is Detected By
Detects

OIM NP

10

.

FIGURE 5. JMSS NP STD FOR THE SHIP OBJECT CLASS

Do Initialization()
Send S2()

Initializing Ship
1

Start Cruising()

Send T1()
Cruise Position Update()

Ship Cruising
2

Create
Ship

End of
Simulation

S1/Create Ship

Ship ID, Location, Vector

S2/Begin Ship Cruising

Ship ID, Location, Vector

Sim2/End Simulation

Calculate Adv_Xfer()
Send S5()
Maneuvering Position Update()

Ship Maneuvering
3S4/Change Ship Vector

{Rule of 36}New Vector

S5/Course Attained

Format Ship Vector()
Send S10()

Ship Vector Reporting
4

S9/Ship Vector Request

Ship ID

S4
S9

S9

STD Ship

11

:

FIGURE 6. JMSS NP ADFD FOR THE SHIP OBJECT CLASS

S.1.1
Create_Ship (Position_Latitude, Position_Longitude)

Get Unique Ship_ID from Ship_ID_List
Type = “Ship”
Maximum_Speed = 30
Minimum_Speed = 0
Acceleration = .25
Deceleration = -.091
Slow_Maneuvering_Speed = 7
Maximum_Rudder_Angle = 35
Current_Heading = 045
Current_Speed = 15
Current_Rudder_Angle = 0
Ordered_Heading = Current_Heading
Ordered_Speed = Current_Speed
Maneuvering_State_Inidcator = “FALSE”

Ship (S)

S1

S.1.1
Initialize Ship

Attributes

Ship ID
List

Ship Data

S1.2 Create IFF
Interrogator

S.1.3 Create IFF
Transponder

S.1.4
Create
Ship
Timer

Current
Time Timer

Ship ID

Ship ID

Ship ID

12

Time_of_Position = Current_Time
Write Data to Ship_Store
Generate S2 (Start Cruising)

End Create_Ship

S.1.2
Create IFF Interogator
"Send the ’create Interogator" signal"

S.1.3
Create IFF Transponder
"Send the ’Create IFF Transponder signal’"

S.1.4
Create five minute timer
Cruise_trigger
Trigger_time = current_time + five minutes

FIGURE 7. JMSS NP ADFD FOR THE SHIP CLASS

S.2.1
The method is invoked by timed entry every five minutes.

Method Steps in Sequence:
A. If Maneuvering_State_Indicator = True then exit.
B. Delta_Time_Min = Current_Time - Time_of_Position
C. Call Constant_Heading_Distance (Current_Heading, Current_Speed,
 Delta_Time_Min, North_South_Distance, East_West_Distance)
D. Call Convert_Distances (North_South_Distance, East_West_Distance,
Position_Latitude, Position_Longitude)

S2

S.2.1
Calculate
Position

Timer

Ship Data Current
Time

13

E. Time_of_Postion = Current_Time.
F. Next_Update_Time = Current_Time plus five minutes.
G. Export_for_Update (Current_Heading, Ordered_Heading, Current_Speed,
Ordered_Speed, Position_Latitude, Position_Longitude,Time_of_Position)
Subroutine Constant_Heading_Distance (Current_Heading, Current_Speed,
Delta_Minutes, North_South_Distance, East_West_Distance)

If Delta_Minutes < 0 then
 Delta_Minutes = 0
 North_South_Distance = 0
 East_West_Distance = 0
Else
 North_South_Distance = Delta_Minutes * Current_Speed * Cos(Current_Heading)/60.
 East_West_Distance = Delta_Minutes * Current_Speed * Sin(Current_Heading)/60.
Endif
End Constant_Heading_Distance
 Subroutine Convert_Distances (North_South_Distance, East_West_Distance, Position_Latitude,
Position_Longitude)
Convert North_South_Distance -> Latitude_Traveled.
Convert East_West_Distance -> Longitude_Traveled
Position_Latitude = Position_Latitude + Latitude_Traveled.
Position_Longitude = Position_Longitude + Longitude_Traveled.
End Convert_Distances

Note: Heading is based on true north; i.e. no variation. Navigation is by Rhumb line. Navigational
conversions and positional updates shall be based on the map display functionality chosen by the
SWEC IPT to support Build NP and the current position.

Maximum_Speed (in knots to the nearest knot; e.g. 30; HLA Real)
Minimum_Speed (in knots to the nearest knot; e.g. 30; HLA Real)
Current_Heading (in degrees to nearest degree; e.g. 243; HLA Real)
Ordered_Heading (in degrees to nearest degree; e.g. 283; HLA Real)
Current_Speed (in knots to the nearest knot; e.g. 15; HLA Real)
Ordered_Speed (in knots to the nearest knot; e.g. 25; HLA Real)
Position_Latitude (degrees to nearest second, North or South; e.g. 15-21-34N;

HLA Real)
Position_Longitude (degrees to nearest second, East or West; e.g. 135-46-22W;

HLA Real)
Time_of_Position (time to nearest minute; e.g. 1634; HLA Real)

14

FIGURE 8. JMSS NP ADFD SHIP CLASS

S.3.1
This method is invoked by timed entry every minute or when the operator orders a new ship’s head-
ing, a new ship’s speed, or a new rudder angle.

Timed Entry (Method Steps in Sequence):
A. If Maneuvering_State_Indicator = False then exit.
B. Call Change_Speed (Ordered_Speed, Current_Speed, Average_Speed)
C. Call Change_Heading (Current_Rudder_Angle, Ordered_Heading,
 Current_Heading, Average_Speed, North_South_Distance,
 East_West_Distance)
D. Call Convert_Distances (North_South_Distance, East_West_Distance,
 Position_Latitude, Position_Longitude)
E. Time_of_Position = Current_Time.
F. Next_Update_Time = Current_Time plus one minute.
G. Export_for_Update (Current_Heading, Ordered_Heading, Current_Speed,
 Ordered_Speed, Position_Latitude, Position_Longitude, Time_of_Position)

S4

S.3.1
Calculate
Maneuver
Position

New Vector

S.3.4 Create
Maneuver

Timer

Timer

S3.2
Determine
Manuever
Complete

S.3.3
Generate S5

Ship
Store

Current
Time

15

New Current_Rudder_Angle Entry (Method Steps in Sequence):
Note: The procedure here is to compute current position based on the “old” ordered heading, speed,
rudder angle and previous position time, and then “GET” from the operator’s command the “new”
Ordered_Rudder_Angle.

A. Maneuvering_State_Indicator = True.
B. Call Change_Speed (Ordered_Speed, Current_Speed, Average_Speed)
C. Call Change_Heading (Current_Rudder_Angle, Ordered_Heading,
Current_Heading, Average_Speed, North_South_Distance,
East_West_Distance)
D. Call Convert_Distances (North_South_Distance, East_West_Distance,
Position_Latitude, Position_Longitude)
E. GET Ordered_Rudder_Angle[Remark: Rudder angle]
F. Current_Rudder_Angle = Ordered_Rudder_Angle[changes are ‘instantaneous”]
G. If Current_Rudder_Angle < 0 then Current_Rudder_Angle = 0
H. If Current_Rudder_Angle > Maximum_Rudder_Angle then
Current_Rudder_Angle = Maximum_Rudder_Angle

Endif
I. Current_Rudder_Angle = 5 * INT(Current_Rudder_Angle / 5)
J. If Ordered_Direction_of_Turn <> Current_Direction_of_Turn then
Degrees_of_Turn_Completed = 0[Remark: New direction = new turn.]
Ordered_Heading = Current_Heading
Current_Direction_of_Turn = Ordered_Direction_of_Turn
[Remark: Ordered_Direction_of_Turn is part of ordered rudder command; L/R]
Endif
K. Time_of_Position = Current_Time.
L. Next_Update_Time = Current_Time plus one minute.
M. Export_for_Update (Current_Heading, Ordered_Heading, Current_Speed,
Ordered_Speed, Position_Latitude, Position_Longitude, Time_of_Position)

New Ordered_Heading Entry (Method Steps in Sequence):
Note: The procedure here is to compute current position based on the “old” ordered heading, speed,
rudder angle and previous position time, and then “GET” from the operator’s command the “new”
Ordered_Heading.

A. Maneuvering_State_Indicator = True
B. Call Change_Speed (Ordered_Speed, Current_Speed, Average_Speed)
C. Call Change_Heading (Current_Rudder_Angle, Ordered_Heading,
Current_Heading, Average_Speed, North_South_Distance,
East_West_Distance)
D. Call Convert_Distances (North_South_Distance, East_West_Distance,
Position_Latitude, Position_Longitude)
E. GET new Ordered_Heading
F. Call Direction_of_Turn (Ordered_Heading, Current_Heading,
Turn_Direction, Degrees_of_Turn)

16

G. If (Turn_Direction <> Current_Direction_of_Turn) OR
Current_Rudder_Angle = 0 then[i.e. New Turn]

Degrees_of_Turn_Completed = 0
Current_Direction_of_Turn = Turn_Direction
Total_Degrees_of_Turn = Degrees_of_Turn

Endif
G. If Turn_Direction = Current_Direction_of_Turn then[Continue Turn]

If Degrees_of_Turn_Completed > 90 then [Start steady turn at 90 to]
Degrees_of_Turn_Completed = 90[keep calculations within]

Endif [table range of 270 degrees.]
Total_Degrees_of_Turn = Degrees_of_Turn +

Degrees_of_Turn_Completed
Endif

H. Current_Rudder_Angle = 36 – Current_Speed[Remark:Rule of 36]
I. Current_Rudder_Angle = 5 * INT(Current_Rudder_Angle / 5)
J. Time_of_Position = Current_Time.
K. Next_Update_Time = Current_Time plus one minute
L. Export_for_Update (Current_Heading, Ordered_Heading, Current_Speed,
Ordered_Speed, Position_Latitude, Position_Longitude, Time_of_Position)

New Ordered_Speed Entry (Method Steps in Sequence):
Note: The procedure here is to compute current position based on the “old” ordered heading, speed,
rudder angle and previous position time, and then “GET” from the operator’s command the “new”
Ordered_Speed.

A. Maneuvering_State_Indicator = True.
B. Call Change_Speed (Ordered_Speed, Current_Speed, Average_Speed)
C. Call Change_Heading (Current_Rudder_Angle, Ordered_Heading,
Current_Heading, Average_Speed, North_South_Distance,
East_West_Distance)
D. Call Convert_Distances (North_South_Distance, East_West_Distance,
Position_Latitude, Position_Longitude)
E. If Ordered_Speed > Maximum_Speed then Ordered_Speed = Maximum_Speed
F. If Ordered_Speed < Minimum_Speed then Ordered_Speed = Minimum_Speed
G. Time_of_Position = Current_Time
H. Next_Update_Time = Current_Time plus one minute
I. Export_for_Update (Current_Heading, Ordered_Heading, Current_Speed,
Ordered_Speed, Position_Latitude, Position_Longitude, Time_of_Position)

Subroutine Change_Heading (Current_Rudder_Angle, Ordered_Heading,
Current_Heading, Average_Speed, North_South_Distance,

East_West_Distance)

[Remark: Delta_Time_Min and Delta_Time_Sec are obtained in Change_Speed subroutine and
available as global variables.]

17

If Current_Speed < Slow_Manuevering_Speed then
[Remark: Kinematics is point to point; no advance and transfer.]

Call Constant_Heading_Distance (Current_Heading, Current_Speed,
Delta_Time_Min, North_South_Distance, East_West_Distance)

If [Current_Direction_of_Turn <> 0 AND
ABS (Ordered_Heading – Current_Heading) < (15 * Delta_Time_Min)] then

Current_Heading = Ordered_Heading[Remark: Turn Complete]
Current_Rudder_Angle = 0
Current_Direction_of_Turn = 0

Elseif [Current_Direction_of_Turn <> 0 AND
Ordered_Heading = Current_Heading] then

Current_Heading = 15 * Current_Direction_of_Turn * Delta_Time_Min
+ Current_Heading
Ordered_Heading = Current_Heading[Remark: Constant Turn]

Elseif [Current_Direction_of_Turn <> 0 AND
ABS (Ordered_Heading – Current_Heading) > (15 * Delta_Time_Min)] then

Current_Heading = 15 * Current_Direction_of_Turn * Delta_Time_Min
+ Current_Heading

Endif [Remark: Continue Turn]
EXIT SUBROUTINE
Endif [Remark: End Slow_Speed_Maneuvering]

If Current_Rudder_Angle = 0 then
Ordered_Heading = Current_Heading
Current_Direction_of_Turn = 0

Call Constant_Heading_Distance (Current_Heading, Current_Speed,
Delta_Time_Min, North_South_Distance, East_West_Distance)

Elseif (Current_Heading <> Ordered_Heading) AND (Current_Rudder_Angle <> 0) then

GET Advance_&_Transfer_Table (Current_Rudder_Angle)
[Note: Refer to Reference b for Table References.

Table Entries are every 5 degrees.]

If Degrees_of_Turn_Completed = 0 then
Advance_Completed = 0
Transfer_Completed = 0
Distance_Completed = 0
Endif

Row_Entry_Index_1 = INT (Degrees_of_Turn_Completed / 5)
Row_Entry_Index_2 = Row_Entry_Index_1
Row_Entry_Index_3 = FIX (Total_Degrees_of_Turn / 5) + 1
If Row_Entry_Index_3 <= Row_Entry_Index_2 then

Row_Entry_Index_3 = Row_Entry_Index_2 + 1
Seconds_Required = 0

18

Row_Entry_Index_2 = Row_Entry_Index_2 + 1
Distance = Table_Distance_From_Start_of_Turn (Row_Entry_Index_2) –

Distance_Completed
Seconds_Required_Old = Seconds_Required

Seconds_Required = (Distance * 3600) / (2027 * Average_Speed)
Until [(Seconds_Required >= Delta_Time_Sec) OR
(Row_Entry_Index_2 >= Row_Entry_Index_3)]

Current_Heading_PM_90 = Current_Heading + 90 * Current_Direction_of_Turn
Current_Heading_PM_90 = Current_Heading_PM_90 Modulus 360

Degrees_of_This_Turn = (Row_Entry_Index_2*5) - Degrees_of_Turn_Completed
Degrees_of_Turn_Completed = Row_Entry_Index_2 * 5

If Row_Entry_Index_2 >= Row_Entry_Index_3 then
[Remark: Turn is complete.]
Advance_1 = Table_Advance(Row_Entry_Index_2) – Advance_Completed

Transfer_1 = Table_Transfer(Row_Entry_Index_2) - Transfer_Completed
North_South_AT = Advance_1 * Cos(Current_Heading) + Transfer_1 *
Cos(Current_Heading_PM_90)
East_West_AT = Advance_1 * Sin(Current_Heading) + Transfer_1 *
Sin(Current_Heading_PM_90)

Current_Heading = Ordered_Heading
Current_Rudder_Angle = 0
Current_Direction_of_Turn = 0

Else
Fraction = (Delta_Time_Sec – Seconds_Required_Old) /

(Seconds_Required – Seconds_Required_Old)

Advance_1 = Table_Advance (Row_Entry_Index_2 - 1)
Advance_2 = Table_Advance (Row_Entry_Index_2)
Advance_3 = Advance_1 + (Advance_2 – Advance_1) * Fraction
Advance_Completed = Advance_3 - Advance_Completed

Transfer_1 = Table_Transfer (Row_Entry_Index_2 - 1)
Transfer_2 = Table_Transfer (Row_Entry_Index_2)
Transfer_3 = Transfer_1 + (Transfer_2 – Transfer_1) * Fraction
Transfer_Completed = Transfer_3 - Transfer_Completed

Distance_1 = Table_Distance_From_Start_of_Turn (Row_Entry_Index_2 - 1)
Distance_2 = Table_Distance_From_Start_of_Turn (Row_Entry_Index_2)
Distance_3 = Distance_1 + (Distance_2 – Distance_1) * Fraction
Distance_Completed = Distance_3 - Distance_Completed

North_South_AT = Advance_Completed * Cos(Current_Heading) +

19

Transfer_Completed * Cos(Current_Heading_PM_90)
East_West_AT = Advance_Completed * Sin(Current_Heading) +
Transfer_Completed * Sin(Current_Heading_PM_90)

Current_Heading = Current_Heading + Degrees_of_This_Turn *
Current_Direction_of_Turn

Current_Heading = Current_Heading Modulus 360
Endif

Delta_Time = (Delta_Time_Sec – Seconds_Required) / 60
Call Constant_Heading_Distance (Current_Heading, Current_Speed,
Delta_Time, North_South_Distance, East_West_Distance)
North_South_Distance = North_South_Distance + North_South_AT
East_West_Distance = East_West_Distance + East_West_AT

Elseif (Ordered_Heading = Current_Heading) AND (Current_Rudder_Angle <> 0) then
[Remark: This is a constant turn, no final heading.]

GET Advance_&_Transfer_Table (Current_Rudder_Angle)
[Note: Refer to Reference b for Table References.

Table Entries are every 5 degrees.]

If Degrees_of_Turn_Completed > 90 then Degrees_of_Turn_Completed = 90
[Remark: Ship is in a steady turn; calculate from start of steady turn circle.]

If Degrees_of_Turn_Completed = 0 then
Advance_Completed = 0
Transfer_Completed = 0
Distance_Completed = 0
Endif

Row_Entry_Index_1 = INT (Degrees_of_Turn_Completed / 5)
Row_Entry_Index_2 = Row_Entry_Index_1
Seconds_Required = 0

Do
Row_Entry_Index_2 = Row_Entry_Index_2 + 1

Distance = Table_Distance_From_Start_of_Turn (Row_Entry_Index_2) –
Distance_Completed

Seconds_Required_Old = Seconds_Required
Seconds_Required = (Distance * 3600) / (2027 * Average_Speed)

Until [(Seconds_Required >= Delta_Time_Sec)

Fraction = (Delta_Time_Sec – Seconds_Required_Old) / (Seconds_Required –
Seconds_Required_Old)
Advance_1 = Table_Advance (Row_Entry_Index_2 - 1)

20

Advance_2 = Table_Advance (Row_Entry_Index_2)
Advance_3 = Advance_1 + (Advance_2 – Advance_1) * Fraction
Advance_Completed = Advance_3 - Advance_Completed

Transfer_1 = Table_Transfer (Row_Entry_Index_2 - 1)
Transfer_2 = Table_Transfer (Row_Entry_Index_2)
Transfer_3 = Transfer_1 + (Transfer_2 – Transfer_1) * Fraction
Transfer_Completed = Transfer_3 - Transfer_Completed

Distance_1 = Table_Distance_From_Start_of_Turn (Row_Entry_Index_2 - 1)
Distance_2 = Table_Distance_From_Start_of_Turn (Row_Entry_Index_2)
Distance_3 = Distance_1 + (Distance_2 – Distance_1) * Fraction
Distance_Completed = Distance_3 - Distance_Completed

Current_Heading_PM_90 = Current_Heading + 90 * Current_Direction_of_Turn
Current_Heading_PM_90 = Current_Heading_PM_90 Modulus 360
North_South_AT = Advance_Completed * Cos(Current_Heading) +
Transfer_Completed * Cos(Current_Heading_PM_90)
East_West_AT = Advance_Completed * Sin(Current_Heading) +
Transfer_Completed * Sin(Current_Heading_PM_90)
North_South_Distance = North_South_AT
East_West_Distance = East_West_AT

Degrees_of_This_Turn = (Row_Entry_Index_2*5) - Degrees_of_Turn_Completed
Degrees_of_Turn_Completed = Row_Entry_Index_2*5

Current_Heading = Current_Heading + Degrees_of_This_Turn *
Current_Direction_of_Turn

Current_Heading = Current_Heading Modulus 360
Endif
End Change_Heading

Subroutine Change_Speed (Ordered_Speed, Current_Speed, Average_Speed)

Delta_Time_Min = Current_Time – Time_of_Position [In MIN !!!]
Delta_Time_Sec = Current_Time – Time_of_Position [In SEC !!!]

If Ordered_Speed = Current_Speed then
Average_Speed = Current_Speed
Elseif Ordered_Speed > Current_Speed then
Seconds_Required = (Ordered_Speed – Current_Speed) / Acceleration
If Seconds_Required > = Delta_Time_Sec then
If (Seconds_Required - Delta_Time_Sec) < 5 then[Remark: 5 sec =]
New_Speed = Ordered_Speed[85 ft at 30 kts; < 1 sec arc;]

Else [acceleration completed]
New_Speed = Current_Speed + Acceleration * Delta_Time_Sec

21

Endif
Average_Speed = .5 * (New_Speed + Current_Speed)
Current_Speed = New_Speed
Elseif Seconds_Required < Delta_Time_Sec then
If (Delta_Time_Sec - Seconds_Required) < 5 then
New_Speed = Ordered_Speed

Else
New_Speed = Current_Speed + Acceleration * Seconds_Required

Endif
Average_Speed = .5 * (New_Speed + Current_Speed)
Average_Speed = (Average_Speed – New_Speed)*Seconds_Required /
Delta_Time_Sec

Average_Speed = New_Speed + Average_Speed
Current_Speed = New_Speed

Endif
Elseif Ordered_Speed < Current_Speed then
Seconds_Required = (Current_Speed – Ordered_Speed) / Deceleration
If Seconds_Required > = Delta_Time_Sec then
If (Seconds_Required - Delta_Time_Sec) < 5 then
New_Speed = Ordered_Speed

 Elseif
New_Speed = Current_Speed + Deceleration * Delta_Time_Sec
Endif
Average_Speed = .5 * (New_Speed + Current_Speed)
Current_Speed = New_Speed
Elseif Seconds_Required < Delta_Time_Sec then
If (Delta_Time_Sec - Seconds_Required) < 5 then
New_Speed = Ordered_Speed

Else
New_Speed = Current_Speed + Deceleration * Seconds_Required

Endif
Average_Speed = .5 * (New_Speed + Current_Speed)

Average_Speed = (Average_Speed – New_Speed)*Seconds_Required /
Delta_Time_Sec

Average_Speed = New_Speed + Average_Speed
Current_Speed = New_Speed
Endif
Endif
End Change_Speed

 Subroutine Convert_Distances (North_South_Distance, East_West_Distance, Position_Latitude,
Position_Longitude)

Note: Heading is based on true north; i.e. no variation. Navigation is by Rhumb line. Navigational
conversions and positional updates shall be based on the map display functionality chosen by the
SWEC IPT to support Build NP and the current position.

22

Convert North_South_Distance -> Latitude_Traveled.
Convert East_West_Distance -> Longitude_Traveled
Position_Latitude = Position_Latitude + Latitude_Traveled.
Position_Longitude = Position_Longitude + Longitude_Traveled.
End Convert_Distances

Subroutine Direction_of_Turn (Ordered_Heading, Current_Heading,
Turn_Direction, Degrees_of_Turn)

Turn_Direction = 1

If Ordered_Heading = Current_Heading then Turn_Direction = 0
[Remark: Right = 1, Left = -1, No turning = 0]

Degrees_of_Turn = Ordered_Heading – Current_Heading

If Degrees_of_Turn > 180 degrees then
Turn_Direction = -1
Degrees_of_Turn = 360 - Degrees_of_Turn
Endif
If Current_Heading > Ordered_Heading then

Degrees_of_Turn = Current_Heading – Ordered_Heading
If Degrees_of_Turn < 180 degrees then

Turn_Direction = -1
Else

Degrees_of_Turn = 360 - Degrees_of_Turn
Endif

Endif
End Direction_of_Turn

S.3.2
If Current_Heading = Ordered_Heading AND Current_Rudder_Angle = 0 AND
Current_Speed = Ordered_Speed then

Next_Update_Time = Next_Update_Time + 4 minutes
Maneuvering_State_Indicator = False

Endif

S.3.3
Generate and send the event S5

S.3.4
Set Ship Timer
Get current time
add 5 minutes
Set periodic ship timer

23

FIGURE 9. JMSS NP ADFD SHIP CLASS

S.4.1
Receive event to output ship vector
Get ship data from ship data store
Format ship data

S.4.2
Receive formatted ship data
Generate event S10

3.2.2 AIRCRAFT OBJECT CLASS

There shall be only one FA18C object. It is instantiated from the Aircraft object class. It shall
“have an” IFF transponder capable of responding to IFF interrogations from ships.

S9

S.4.1 Format
Ship Vector

S.4.2 Send
S10

Ship Data

24

.

FIGURE 10. JMSS NP STD AIRCRAFT CLASS

Do Initialization()
Send AC2()

Initializing
Aircraft

1

Create
Aircraft

AC1/Create AC

AC ID, Location, Vector

End of
Simulation

Start Flying()
Change Vector()

Aircraft Flying
2

AC2/Begin AC Flying

AC ID, Location, Vector

Sim2/End Simulation

AC3/Change AC Vector

New Vector

Format AC Vector()
Send AC10()

AC Vector
Reporting

3

AC9/AC Vector Request

AC ID

AC3

AC9

Sim2

25

 .

FIGURE 11. JMSS NP ADFD AIRCRAFT CLASS

AC.1.1
Create_Aircraft (Type, Position_Latitude, Position_Longitude)

Get Unique Acircraft_ID from Aircraft_ID_List

If Type = “Blue” then
Maximum_Speed = 1032
Minimum_Speed = 200
Climb_Speed = 350
Climb_Rate = 70
Descent_Speed = 250
Descent_Rate = -100
Acel_a = 4.285*10-4
Acel_b = -3.2*10-2
Decel_a = -.175
Decel_b = 6.273*10-3
Current_Heading = 090
Current_Speed = 450
Current_Altitude = 25000

Else [Remark: Red Aircraft]
Maximum_Speed = 1295
Minimum_Speed = 200
Climb_Speed = 300

Create
Aircraft

AC.1.1 Initialize
AC Attributes

Generate
Transponder

Create

Set AC
Timer

Set Timer
Aircraft

DataAircraft ID
List

26

Climb_Rate = 65
Descent_Speed = 275
Descent_Rate = -150
Acel_a = 3.26*10-4
Acel_b = -2.8*10-3
Decel_a = -.175
Decel_b = 6.273*10-3
Current_Heading = 270
Current_Speed = 500
Current_Altitude = 28000

Endif

Ordered_Heading = Current_heading
Ordered_Speed = Current_Speed
Ordered_Altitude = Current_Altitude
Create position update Trigger and set udate time to one minute
Time_of_Position = Current_Time
Write Data to Aircraft_Store
Generate AC2 (Creation and initialization complete => start flying)

End Create_Aircraft

AC.1.2
Generate the event to create a transponder

AC.1.3
Get current time; add one minute; create periodic timer.

27

FIGURE 12. JMSS NP ADFD AIRCRAFT CLASS

AC.2.1
Timed Entry (Method Steps in Sequence):
A. Call Aircraft_Kinematics (Current_Heading, Ordered_Heading,Current_Speed,
Ordered_Speed, Current_Altitude, Ordered_Altitude

North_South_Distance, East_West_Distance)
B. Call Convert_Distances (North_South_Distance, East_West_Distance,
Position_Latitude, Position_Longitude)
C. Time_of_Position = Current_Time.
D. Next_Update_Time = Current_Time plus one minute.
E. Export_for_Update (Current_Heading, Ordered_Heading, Current_Speed,
Ordered_Speed, Current_Altitude, Ordered_Altitude,
Position_Latitude, Position_Longitude, Time_of_Position)
F. Reset timer

New Ordered_Heading Entry (Method Steps in Sequence):
Note: The procedure here is to compute current position based on the “old” ordered heading, speed,
altitude and previous position time, and then “GET” from the operator’s command the “new”
Ordered_Heading.

A. Call Aircraft_Kinematics (Current_Heading, Ordered_Heading,Current_Speed,
Ordered_Speed, Current_Altitude, Ordered_Altitude

North_South_Distance, East_West_Distance)
B1 Call Convert_Distances (North_South_Distance, East_West_Distance,

AC2

AC2.1 Flying

Timer

Aircraft
Data

Current
Time

AC.2.2
Change
Vector

28

Position_Latitude, Position_Longitude)
B2. Get new Ordered_Heading
C. Call Direction_of_Turn (Ordered_Heading, Current_Heading,
Turn_Direction, Degrees_of_Turn)
D. Degrees_of_Turn_Completed = Degrees_of_Turn[Remark: Aircraft turns]
E. Current_Direction_of_Turn = Turn_Direction[are “instantaneous.”]
F. Time_of_Position = Current_Time.
G. Next_Update_Time = Current_Time plus one minute
H. Export_for_Update (Current_Heading, Ordered_Heading, Current_Speed,
Ordered_Speed, Current_Altitude, Ordered_Altitude,
Position_Latitude, Position_Longitude, Time_of_Position)

New Ordered_Speed Entry (Method Steps in Sequence):
Note: The procedure here is to compute current position based on the “old” ordered heading, speed,
altitude and previous position time, and then “GET” from the operator’s command the “new”
Ordered_Speed.

A. Call Aircraft_Kinematics (Current_Heading, Ordered_Heading,Current_Speed,
Ordered_Speed, Current_Altitude, Ordered_Altitude

North_South_Distance, East_West_Distance)
B. Call Convert_Distances (North_South_Distance, East_West_Distance,
Position_Latitude, Position_Longitude)
C. GET new Ordered_Speed
D. If Ordered_Speed > Maximum_Speed then Ordered_Speed = Maximum_Speed
E. If Ordered_Speed < Minimum_Speed then Ordered_Speed = Minimum_Speed
F. Time_of_Position = Current_Time
G. Next_Update_Time = Current_Time plus one minute
H. Export_for_Update (Current_Heading, Ordered_Heading, Current_Speed,
Ordered_Speed, Current_Altitude, Ordered_Altitude,
Position_Latitude, Position_Longitude, Time_of_Position)

New Ordered_Altitude Entry (Method Steps in Sequence):
Note: The procedure here is to compute current position based on the “old” ordered heading, speed,
altitude and previous position time, and then “GET” from the operator’s command the “new”
Ordered_Altitude.

A. Call Aircraft_Kinematics (Current_Heading, Ordered_Heading,Current_Speed,
Ordered_Speed, Current_Altitude, Ordered_Altitude

North_South_Distance, East_West_Distance)
B. Call Convert_Distances (North_South_Distance, East_West_Distance,
Position_Latitude, Position_Longitude)
C. GET new Ordered_Altitude
D. If Ordered_Altitude > Maximum_Altitude then Ordered_Altitude =
Maximum_Altitude
E. If Ordered_Altitude < Minimum_Altitude then Ordered_Altitude =
Minimum_Altitude

29

F. Time_of_Position = Current_Time
G. Next_Update_Time = Current_Time plus one minute
H. Export_for_Update (Current_Heading, Ordered_Heading, Current_Speed,
Ordered_Speed, Current_Altitude, Ordered_Altitude,
Position_Latitude, Position_Longitude, Time_of_Position)

Subroutine Aircraft_Kinematics (Current_Heading, Ordered_Heading,Current_Speed,
Ordered_Speed, Current_Altitude, Ordered_Altitude

North_South_Distance, East_West_Distance)

Delta_Time_Min = Current_Time – Time_of_Position [In MIN !!!]
Delta_Time_Sec = Current_Time – Time_of_Position [In SEC !!!]

NS_Total = 0
EW_Total= 0
Delta_Time = 0166667 minutes [Remark: one second]

If Ordered_Altitude > Current_Altitude then
If Current_Speed = Climb_Speed then

Call Constant_Heading_Distance (Current_Heading, Climb_Speed,
Delta_Time, North_South_Distance, East_West_Distance)

NS_Total = NS_Total + North_South_Distance
EW_Total = EW_Total + East_West_Distance
Call Aircraft_Heading_Change (Current_Heading, Ordered_Heading,

Climb_Speed)
Current_Altitude = Current_Altitude + Climb_Rate
If Current_Altitude >= Ordered_Altitude then

Current_Altitude = Ordered_Altitude
Endif

Else [Remark: Aircraft must get to Climb_Speed before climbing]
Call Aircraft_Speed_Change (Current_Speed, Climb_Speed,

Average_Speed)
Call Aircraft_Heading_Change (Current_Heading, Ordered_Heading,

Average_Speed)
Endif

Elseif Ordered_Altitude < Current_Altitude then
If Current_Speed = Descent_Speed then
Call Constant_Heading_Distance (Current_Heading, Descent_Speed,
Delta_Time, North_South_Distance, East_West_Distance)
NS_Total = NS_Total + North_South_Distance
EW_Total = EW_Total + East_West_Distance

Call Aircraft_Heading_Change (Current_Heading, Ordered_Heading,
Descent_Speed)
Current_Altitude = Current_Altitude + Descent_Rate
If Current_Altitude <= Ordered_Altitude then

Current_Altitude = Ordered_Altitude

30

Endif

Else [Remark: Aircraft must get to Descent_Speed before Decending]
Call Aircraft_Speed_Change (Current_Speed, Descent_Speed,
Average_Speed)

Call Aircraft_Heading_Change (Current_Heading, Ordered_Heading,
Average_Speed)

Endif

Elseif Current_Altitude = Ordered_Altitude[Remark: Aircraft regains Ordered_Speed]
Call Constant_Heading_Distance (Current_Heading, Current_Speed,

Delta_Time, North_South_Distance, East_West_Distance)
NS_Total = NS_Total + North_South_Distance
EW_Total = EW_Total + East_West_Distance
Call Aircraft_Speed_Change (Current_Speed, Ordered_Speed,

Average_Speed)
Call Aircraft_Heading_Change (Current_Heading, Ordered_Heading,

Average_Speed)
Endif

Delta_Time_Sec = Delta_Time_Sec – 1
Until Delta_Time_Sec <= 0

North_South_Distance = NS_Total
East_West_Distance = EW_Total

End Aircraft_Kinematics

Subroutine Aircraft_Heading_Change (Current_Heading, Ordered_Heading,
Average_Speed)
If Ordered_Heading <> Current_Heading then
Rate_of_Turn = 1091.5 / Average_Speed

Current_Heading = Current_Direction_of_Turn * Rate_of_Turn +
Current_Heading

Degrees_of_Turn_Completed = Degrees_of_Turn_Completed –
Rate_of_Turn
If Degrees_of_Turn_Completed <= 0 then

Current_Heading = Ordered_Heading
Degrees_of_Turn_Completed = 0

Endif
Endif
End Aircraft_Heading_Change

Subroutine Aircraft_Speed_Change (Current_Speed, New_Speed, Average_Speed)

Old_Speed = Current_Speed

31

If New_Speed <> Current_Speed then
If New_Speed > Current_Speed then
Acceleration = 1 / (Acel_a* Current_Speed + Acel_b).
Current_Speed = Current_Speed + Acceleration
If Current_Speed > New_Speed then

Current_Speed = New_Speed
Endif

Elseif New_Speed < Current_Speed then
Deceleration = -.175 * EXP (.006273 * Current_Speed)

Current_Speed = Current_Speed + Deceleration
If Current_Speed < New_Speed then

Current_Speed = New_Speed
Endif
Endif
Endif
Average_Speed = .5 (Old_Speed + Current_Speed)
End Aircraft_Speed_Change

Maximum_Speed (in knots to the nearest knot; e.g. 1030; HLA Real)
Minimum_Speed (in knots to the nearest knot; e.g. 200; HLA Real)
Climb_Speed (in knots to the nearest knot; e.g. 300; HLA Real)
Climb_Rate (in feet / second to the nearest foot; e.g. 70; HLA Real)
Decent_Speed (in knots to the nearest knot; e.g. 250; HLA Real)
Decent_Rate (in feet / second to the nearest foot; e.g. -75; HLA Real)
Current_Heading (in degrees to nearest degree; e.g. 243; HLA Real)
Ordered_Heading (in degrees to nearest degree; e.g. 283; HLA Real)
Current_Speed (in knots to the nearest knot; e.g. 15; HLA Real)
Ordered_Speed (in knots to the nearest knot; e.g. 25; HLA Real)
Current_Altitude (in feet to the nearest foot; e.g. 2400; HLA Real)
Ordered_Altitude(in feet to the nearest foot; e.g. 24000; HLA Real)
Position_Latitude (degrees to nearest second, North or South; e.g. 15-21-34N;

HLA Real)
Position_Longitude (degrees to nearest second, East or West; e.g. 135-46-22W;

HLA Real)
Time_of_Position (time to nearest minute; e.g. 1634; HLA Real)

3.2.3 RED AIRCRAFT OBJECT CLASS

There shall be only one Red Aircraft object. It shall also be an instance of the Aircraft Object Class.
It shall “have an” IFF transponder capable of responding to IFF interrogations from ships, but only
Modes 3/C (mode 3 code and altitude). Its behaviors shall be the same as the F-18C except with
different values for its AC Object Class attributes.

32

3.2.4 IDENTIFICATION FRIEND OR FOE (IFF)
The IFF system shall consist of two objects: 1) the IFF interrogator/receiver, and 2) the IFF tran-
sponder. Only ship objects shall “have an” IFF interrogator/receiver. Ship and aircraft objects shall
“have a” transponder. The STDs and ADFDs for both the Interrogator and the Transponder are
described in this paragraph. In Build NP, to simplify processing, the transponder shall make the
“within range” and horizon range calculations and reply, or not, depending on the outcome. In
Build NP the maximum range for both the interrogator and transponder is 150 nm.

33

FIGURE 13. JMSS NP STD FOR THE IFF INTERROGATOR OBJECT CLASS

Create IFF
Interrogator

Idle
2

Send IFF2 ()

Send Challenges
3

Eval IFF Response ()

Send IFF4 ()

Send Done ()

Evaluate Responses
4

IFF3/Challenge Response

Mode, Response Data
Done

IFF3/Challenge Response

Mode, Response Data

Interrogator Off
1

IFF0/PowerOn Interrogator

IFF1/Start Challenge Cycle

34

:

FIGURE 14. JMSS NP ADFD FOR THE IFF INTERROGATOR OBJECT CLASS

IFFI.1.1
A. Set I_State_Indicator to OFF
B. Next_Interrogation_Time = null
C. Export_for_Update (I_State_Indicator)
Attributes
I_State_Indicator (On /Off; e.g. On; Boolean)

Reply_List HLA Complex Structure)
Unique_Label (5 alphanumeric characters; e.g. 12Ab5; HLA Character)
Bearing (in degrees to nearest degree; e.g. 243; HLA Real)
Range (in nm to nearest nm; e.g. 121; HLA Real)

Create IFF
Interrogator

IFFI.1.1
Initialize IFFI

Attributes

IFFI.1.2
Generate
Power On

Event

Ship Data

IFF Interrogator
Data

35

Item: Mode 1 code (two octal digits; e.g. 34; HLA Integer)
Item: Mode 2 code (four octal digits; e.g. 3427; HLA Integer)
Item: Mode 3/A code (four octal digits; e.g. 2356; HLA Integer)
Item: Mode 4 code (“YES” or null; e.g. YES; HLA String)
Item: Mode C aircraft altitude (in feet to nearest 100 feet; e.g 235;

HLA Real)

FIGURE 15. JMSS NP ADFD FOR THE IFF INTERROGATOR OBJECT CLASS

IFFI.2.1
Operator Turn_On Entry (Method Steps in Sequence)

A. Set I_State_Indicator to ON
B. Set I_Lat to host ship latitude (Position_Latitude)
C. Set I_Long to host ship longitude (Position_Longitude)
D. TRANSMIT (I_Lat, I_Long) interrogation to search volume.
E. Next_Interrogation_Time = Current_Time + one minute
F. Export_for_Update (I_State_Indicator, Reply_List)

IFFI.2.2
Timed_Entry (Method Steps in Sequence)

A. Set I-Lat to host ship latitude (Position_Latitude)
B. Set I_Long to host ship longitude (Position_Longitude)
C. TRANSMIT (I_Lat, I_Long) interrogation to search volume.

IFF0

IFFI.2.1
Set IFF-I
Power On

Set IFFI
Timer

IFFI
Timer

IFFI.2.2
Generate

IFF1

IFF-I
Data

36

D. Next_Interrogation_Time = Current_Time + one minute
E. Export_for_Update (Reply_List)

FIGURE 16. JMSS NP ADFD FOR THE IFF INTERROGATOR OBJECT CLASS

IFFI.3.1
A. Set I-Lat to host ship latitude (Position_Latitude)
B. Set I_Long to host ship longitude (Position_Longitude)
C. TRANSMIT (I_Lat, I_Long) interrogation to search volume.
D. Call Receive_Replies
E. Next_Interrogation_Time = Current_Time + one minute

IFF1

IFFI.3.2
Generate

IFF2

IFFI.3.3
Send Done

IFFI.3.1
Format IFF-I

Challenge

IFF-I
Data

Ship Data

37

FIGURE 17. JMSS NP ADFD FOR THE IFF INTERROGATOR OBJECT CLASS

IFFI.4.1
Receive_Replies

“Build” Reply_List (one entry for each replying track)
Item: Unique Label
Item: Bearing from Interrogator to replying track
Item: Range from interrogator to replying track.
Item: Mode 1 code
Item: Mode 2 code
Item: Mode 3/A code
Item: Mode 4 code

IFF3

IFFI4.1
Format IFF
Response

Data

Track
Data

IFFI.4.2
Generate

Done

Set Done
Timer

38

Item: Mode C aircraft altitude
End Receive_Replies

FIGURE 18. JMSS NP STD IFF TRANSPONDER OBJECT CLASS

The coded pulse information provided by a transponder are associated with five modes and their
associated codes:

Mode 1 Two digit octal code
Mode 2 Four digit octal code
Mode 3/A Four digit octal code
Mode C Aircraft altituded (-1,000 feet to + 126,000 feet)
Mode 4 Military encrypted identification

IFF is principly used to identify tactical aircraft. Pilots provide information by manipulating the
modes and codes of their aircraft transponders. Modes 1 and 3/A codes may be modified in flight
by the pilot. Modes 2, 4 and C may not be modified by the pilot. However, pilots can turn any

Idle
2

Send IFF3 ()
Send Done ()

Respond to IFF
Interrogation

IFF2/Challenge

Done

Create IFF
Transponder

Transponder Off
1

IFF5/PowerOn Transponder

Send IFF7 ()

Set Mode
IFF6/Set IFF Mode

Mode, Mode Code

IFF7/Mode Set Complete

4

3

39

individual mode on and off, as well as turning the entire transponder off.

Mode 4 is the only mode which provides positive identification since both military (sans mode 4)
and commercial transponders have been sold throughout the world to many different purchasers.

The content of the coded replies enables the operators to assess the identity of the responding air-
craft. If military, many specific codes have meanings associated with various units, activities, mis-
sions. The mode 2 code, for example, is the address used by an aircraft carrier’s Automatic Carrier
Landing System (ACLS) to ensure signals are received by the correct aircraft. The maximum
range for both the transponder and interrogator is 150 nm. This is the number to be used in the with-
in range test.

:

FIGURE 19. JMSS NP ADFD IFF TRANSPONDER OBJECT CLASS

IFFT.1.1
Create IFF Transponder Process

Create_IFF_Transponder (Type)

GET Transponder_ID from Transponder_ID_List

Create IFF
Transponder

IFFT.1.1
Initialize IFF-T

Attributes

IFF Transponder
Data

40

T_State_Indicator = “Off”
Mode_1_OnOff_Indicator = “On”
Mode_2_OnOff_Indicator = “On”
Mode_3/A_OnOff_Indicator = “On”
Mode_4_OnOff_Indicator = “On”
Mode_C_OnOff_Indicator = “On”
Mode_1_Code= 01
Mode_2_Code= 2345
Mode_3/A_Code= 6701
Mode_4_Code= “Yes”
Mode_C_Code= 0123
Reply_List = “null”

Case Type Is
Type = “Red”

Mode_1_OnOff_Indicator = “Off”
Mode_2_OnOff_Indicator = “Off”
Mode_4_OnOff_Indicator = “Off”
Mode_4_Code= “No”

Type = “Ship”
Mode_C_OnOff_Indicator = “Off”

Type = “All Others”
null;

End Case;

Write Attributes to Transponder_Store
*Transponder_ID
Type
T_State_Indicator
Mode_1_OnOff_Indicator
Mode_2_OnOff_Indicator
Mode_3/A_OnOff_Indicator
Mode_4_OnOff_Indicator
Mode_C_OnOff_Indicator
Mode_1_Code
Mode_2_Code
Mode_3/A_Code
Mode_4_Code
Mode_C_Code
Reply_List

End Write

End Create_IFF_Transponder

41

FIGURE 20. JMSS NP ADFD IFF TRANSPONDER OBJECT CLASS

IFFT.2.1
When on, any individual mode the transponder possess shall be selectable to on or off. A mode
which is on shall have its code included in the transpoder’s reply; one which is off shall not. If the
transponder is on but all modes selected off then the transponder shall not reply to the interrogation
in spite of the fact that it is “on”.

IFF5

IFFT2.1 Power
On Transponder

IFF Transponder
Data

42

FIGURE 21. JMSS NP ADFD IFF TRANSPONDER OBJECT CLASS

IFFT.3.1
In Build NP the maximum range for both the transponder and interrogator is 150 nm. This is the
number to be used in the with-in range test.

In Build NP the radar horizon range equation shall be in nautical miles and equal to
1.23*[Square_Root (IFF_Antenna_Height + Square_Root (Track_Altitude)]

In Build NP the IFF_Antenna_Height shall be the Generic Ship Hull height above the water line ,
136 feet. Square_Root (136) = 11.66. Thus

Horizon_Range = 1.23 * Square_Root (Track_Altitude) + 14.34.

IFF2

IFFT.3.1

IFF Transponder
Data

IFFT.3.2
Formulate
Challenge

Reply

IFFT.3.3
Generate

IFF3

IFFT.3.4
Generate

Done

Aircraft
Data

Check for
Detections

|

43

Interrogation Entry (Method Steps in Sequence)

A. M_State_Indicator = Off
For each Mode_(i) = On[Remark: At least one mode must]

M_State_Indicator = On[be on for a reply to be sent. Note:]
Endfor [If present, Mode 4 is always on.]

B. If T_State_Indicator = Off OR M_State_Indicator = Off then
 Exit Method [Remark: No reply if transponder or]

Endif [all modes are off.]
C. Get I_Lat and I_Long from interrogation message
D. Set T_Lat = Transponder’s host Position_Latitude
E. Set T_Long = Trandponders’s host Position_Longitude
F. Call Bearing_Range (I_Lat, I_Long, T_Lat, T_Long, Bearing, Range)
G. If Transonder’s host = Ship then

Set Track_Altitude = 136[Remark: Ship’s height above water line]
Else

Set Track_Altitude = Current_Altitude
Endif

F. Horizon_Range = 1.23 * Square_Root (Track_Altitude) + 14.34.
G. If Range <= 150 AND Range <= Horizon_Range then[Remark: With-in]

Call Reply_to_Interrogation [range and horizon]
Endif [range checks.]

IFFT.3.2
Subroutine Reply_to_Interrogation

Construct Reply_Message
Bearing
Ranget
For each Mode_(i) = ON

Set Item(i) = Mode_(i)_Code
Endfor

End Construct Reply_Message
Send Reply_Message to Interrogator
End Reply_to_Interrogation

Subroutine Bearing_Range (I_Lat, I_Long, T_Lat, T_Long, Bearing, Range)

Note: Bearing is based on true north; i.e. no variation. Navigation is by Rhumb line. Bearing and
range calculations shall be based on the map display functionality chosen by the SWEC IPT to sup-
port Build NP and current positions.

Bearing = Nav_Function (I_Lat, I_Long, T_Lat, T_Long)
Range = Nav_Function (I_Lat, I_Long, T_Lat, T_Long)

End Bearing_Range

44

FIGURE 22. JMSS NP ADFD IFF TRANSPONDER OBJECT CLASS

IFFT.4.2
Mode_OnOff_Code

GET Type from Transponder_Store

GET Mode_ID, OnOff_Indicator and Code from IFF6 Set IFF Mode message

Case Mode_ID Is
Case Mode_ID = “1”

If Type = “Blue” OR Type = “Ship” then
If OnOff_Indicator <> null then

Mode_1_Indicator = OnOff_Indicator
Write Mode_1_Indicator to Transponder_Store

Endif

IFF6

IFFT.4.1
Parse Set

Mode
Command

IFFT.4.2
Change

Mode
On-OffIFFT.4.3

Change
Code

IFF Transponder
Data

Mode cmd type, Mode data

Mode

Code

Code

45

If Code <> null then
Mode_1_Code = Code

Write Mode_1_Code to Transponder_Store
Endif

Endif
Case Mode_ID = “2”

If Type = “Blue” OR Type = “Ship” then
If OnOff_Indicator <> null then

Mode_2_Indicator = OnOff_Indicator
Write Mode_2_Indicator to Transponder_Store
Endif
If Code <> null then

Mode_2_Code = Code
Write Mode_2_Code to Transponder_Store

Endif
Endif

Case Mode_ID = “3/A”[Remark: Everybody has mode 3/A.]
If OnOff_Indicator <> null then

Mode_3/A_Indicator = OnOff_Indicator
Write Mode_3/A_Indicator to Transponder_Store
Endif
If Code <> null then

Mode_3/A_Code = Code
Write Mode_3/A_Code to Transponder_Store
Endif

Case Mode_ID = “C”
If Type = “Blue” OR Type =“Red”

If Mode_ID = “C” AND OnOff_Indicator <> null then
Mode_C_Indicator = OnOff_Indicator

Write Mode_C_Indicator to Transponder_Store
Endif

Endif
Case Mode_ID = “All_Others”[Remark: Can’t change Mode 4 in any way in Build NP.]

null;
End Case

Generate IIF7 (Mode Set Complete)

End Mode_OnOff_Code

3.2.5 TRACK OBJECT

The track object class is used to perfect the association between the ship and the Aircraft

46

FIGURE 23. JMSS NP STD TRACK OBJECT CLASS

47

FIGURE 24. JMSS NP ADFD TRACK OBJECT CLASS

T.1.1
Create List; data stored
Unique_Label Transponder id (5 alphanumeric characters; e.g. 12Ab5; HLA Character)

Bearing (in degrees to nearest degree; e.g. 243; HLA Real)
Range (in nm to nearest nm; e.g. 121; HLA Real)
Item: Mode 1 code (two octal digits; e.g. 34; HLA Integer)
Item: Mode 2 code (four octal digits; e.g. 3427; HLA Integer)
Item: Mode 3/A code (four octal digits; e.g. 2356; HLA Integer)
Item: Mode 4 code (“YES” or null; e.g. YES; HLA String)
Item: Mode C aircraft altitude (in feet to nearest 100 feet; e.g 235;

HLA Real)
Target id (5 alphanumeric characters; e.g. 12Ab5; HLA Character)
Update time (minutes; HLA Character)

Create
Track

T.1.1
Format
Track
Data

Track
Data

Ship Data
Track Info

T.1.2
Generate T2

48

FIGURE 25. JMSS NP ADFD TRACK OBJECT CLASS

T.2.1
A. Receive event to update track with track data.
B. Get corresponding track data from Track Data store.
C. Get Current Time.
D. Update track data and write back to data store.
E. Call "T.2.2".

T2

T.2.1
Maintain

Tracks

Track
Data

Current
Time

T.2.2
Generate T3

49

FIGURE 26. JMSS NP ADFD TRACK OBJECT CLASS

T.3.1
Search for_old_tracks
Check_time = current_time - 5 minutes
For each track in Track_list

If update_time < check_time then
delete_track

endif
end for

T3

T.3.1
Search for
Old Tracks

T.3.2
Delete

Old Track

Track ID
Track
Data

Current
Time

50

FIGURE 27. JMSS NP ADFD TRACK OBJECT CLASS

T.4.1
A. Receive event to report tracks.
B. Get track data from Track Data store.
C. Format track data.
D. Send data to "T.4.2 Send T10".

3.3 JMSS NP EXTERNAL/INTERNAL INTERFACE REQUIREMENTS.
The Human Computer Interface (HCI) shall be implemented as a single work station in the fashion
of a Surrogate C4I System. Beyond the HCI display there are no other external interface require-
ments or specifications. The user operates through the HCI. In this case the users are the testors.

T9

T.4.1
Format
Tracks

T.4.2
Send
T10

Tracks
Track
Data

51

52

FIGURE 28. JMSS NP OBJECT COMMUNICATIONS MODEL (OCM)

The above figure identifies the external interfaces in the system. These interfaces shall be specified
at the Application Layer of the ISO Model for Open Systems Architecture. The Session, Transport,
Network and Physical layers are implemented in the operating system software and the hardware
devices. These interface definitions are advisory only. The HCI is used to both unit test and to
integration test. A Software Design Description (SDD) Appendix to specify the HCI to be used
and built for testing and demonstration purposes. The operational HCI will be supplied by JSIMS
Joint Project Office (JPO).
The IDs of the interfaces are:

• SM-HCI Simulation Model (SM) of the JMSS NP to Human Computer Interface (HCI) for
the JMSS NP

• HCI-U Human Computer Interface (HCI) of the JMSS NP to the User (U)

3.3.1 SM-HCI INTERFACE

3.3.1.1 DATA TO THE HCI FROM THE SM

1 .Position Data
This data shall contain the identification, position, course, speed and altitude of each object having
data sent to the HCI. This shall be data designated by the HCI to be of interest. It shall be the
responsibility of the HCI to assign the proper NTDS icon to the track and to display the position
report in the proper place on the screen. This display shall be against a geographical display that

shall be created using the Map Draw Module of Caricature.(TM) With the passage of time, the HCI
shall compute new positions and display same. The frequency shall be contained in the design for
the HCI. This data transfer shall occur when an event happens affecting the object. This data shall
be supplied only for those items requested by the HCI to be of interest.

1 .Textual Data
Textual data shall be status information upon the request of the HCI. This shall be tabular infor-
mation about every object in the track database. It shall contain the same position information as
represented above.

3.3.1.2 DATA TO THE SM FROM THE HCI

1 .Position Data
None

1 .Textual Data
This data shall contain the entities to be instantiated at start-up and their initial points; a list.

3.3.2 HCI-U INTERFACE

3.3.2.1 DATA TO THE U FROM THE HCI

1 .Position Data

53

This class of data shall be displayed using the Map Draw Module in Geographical form. NTDS
icons shall be used for presentation. Each report shall include ID, position, course and speed. This
data, other than iconic presentation, shall be displayed upon requested. The tracks shall be those
previously requested by the user. Position data shall be produced upon the occurrence of an event
in the SM. These reports shall be unsolicited.

1 .Textual Data
Status reports shall be presented for each track. These data shall include the position of each track
in the SM. These track reports shall be updated upon the occurrence of an event. The reports shall
be displayed only upon request. They must be solicited.

3.3.2.2 DATA TO THE HCI FROM THE U

1 .Position Data
None

1 .Textual Data
The initial list of platforms and their position, course and speed. This shall be in list form. A sec-
ond list shall be that of tracks of interest. This shall be the tracks to be displayed on the Geo Tac-
tical Display. Also, requests to change various attributes.

3.4 JMSS NP INTERNAL INTERFACE REQUIREMENTS.
All additional internal interface requirements will be the subject of the Software Design Descrip-
tion (SDD).

3.5 JMSS NP INTERNAL DATA REQUIREMENTS.
All internal data shall be the subject of the Software Design Description (SDD).

3.6 ADAPTATION REQUIREMENTS.
This paragraph is tailored out.

3.7 SAFETY REQUIREMENTS.
No special requirements

3.8 SECURITY AND PRIVACY REQUIREMENTS.
No special requirements

3.9 JMSS NP ENVIRONMENT REQUIREMENTS.
No special requirements

3.10 COMPUTER RESOURCE REQUIREMENTS.

3.10.1 COMPUTER HARDWARE REQUIREMENTS.
The hardware to be used for the development and testing of the JMSS NP are contained in the Lab-
oratory in Bldg. 606 Room 241A. The machines are designated "Pepper" and "Coke".

3.10.2 COMPUTER HARDWARE RESOURCE UTILIZATION REQUIREMENTS.
There are no special requirements.

54

3.10.3 COMPUTER SOFTWARE REQUIREMENTS.
The existing Map Draw Module of the Caricature software system shall be used for the Geo-Tac-
tical display. IMPORT shall be used as the design translation software to generate the C++ code
for the JMSS NP .

3.10.4 COMPUTER COMMUNICATIONS REQUIREMENTS.
The Local Area Network is in place to support the development. No other special requirements
exist.

3.11 SOFTWARE QUALITY FACTORS.
Software quality assurance shall be limited to inspection of products by the SWEC staff. Appro-
priate requirements and design reviews shall be held by the Build Manager as called for in the
POA&M>

3.12 DESIGN AND IMPLEMENTATION CONSTRAINTS.
None

3.13 PERSONNEL-RELATED REQUIREMENTS.
None

3.14 TRAINING-RELATED REQUIREMENTS.
None

3.15 LOGISTICS-RELATED REQUIREMENTS.
None

3.16 OTHER REQUIREMENTS.
None

3.17 PACKAGING REQUIREMENTS.
None

3.18 PRECEDENCE AND CRITICALITY OF REQUIREMENTS.
None

55

4.0 QUALIFICATION PROVISIONS.
This section defines a set of qualification methods and specifies, for each software requirement
(State) in Section 3, the method(s) to be used to ensure that the requirement has been met. A table
is used to present this information. Qualification methods include:

• a. Demonstration: The operation of the JMSS NP , or a part of the JMSS NP , that relies on
observable functional operation not requiring the use of instrumentation, special test equip-
ment, or subsequent analysis.

• b. Test: The operation of the JMSS NP , or a part of the JMSS NP , using instrumentation or
other special test equipment to collect data for later analysis.

• c. Analysis: The processing of accumulated data obtained from other qualification methods.
Examples are reduction, interpretation, or extrapolation of test results.

• d. Inspection: The visual examination of JMSS NP code, documentation, etc.
• e. Special qualification methods: Any special qualification methods for the JMSS NP , such as

special tools, techniques, procedures, facilities, and acceptance limits.

Table 1: Qualification Requirements

States Demonstration Test Analysis Inspection
Special

Qualification

Figure 5
State 1

X X

State 2 X X

State 3 X X

State 4 X X X

Figure 10
State 1

X X

State 2 X X

State 3 X X

Figure 13
State 1

X X

State 2 X

State 3 X X

State 4 X X

Figure 18
State 1

X X

State 2 X

State 3 X X

56

State 4 X X

Figure 23
State 1

X

State 2 X

State 3 X

State 4 X X

Table 1: Qualification Requirements

States Demonstration Test Analysis Inspection
Special

Qualification

57

5.0 REQUIREMENTS TRACEABILITY.
The requirments traceability is provided by the correlation of the functional requirement to the
States of the Object classes where that requirement is satisfied. The attendant processing specifi-
cations will provide the detail on the computations and data definitions required to satify the re-
quirement.

5.1 GENERIC SHIP HULL

FR1: The ship shall possess a unique location.
The location will be the ship’s latitude and longitude, both measured to the nearest second of arc;
i.e. degrees, minutes, and seconds.

FR3: The ship shall be capable of steady state movement as measured by the ship’s heading and
speed.
The ship’s speed will be measured to the nearest knot and maintained between maximum and min-
imum limits per references i. to j.

FR4: The ship shall be capable of maneuvering by changing its heading and speed as ordered by
the operator through heading changes, speed changes, and rudder angle changes.
Heading changes will be according to advance and transfer, and turning characteristics per refer-
ences b and i. through j.
Speed changes will be according to acceleration and deceleration characteristics, including maxi-
mum and minimum limits, per references i. through j..

5.2 AIRCRAFT (BOTH F/A-18C AND RED)

FR1: The aircraft shall possess a unique location.
The location will be the aircraft’s latitude and longitude, both measured to the nearest second of
arc; i.e. degrees, minutes, seconds.

FR3: The aircraft shall be capable of steady state movement as measured by the aircraft’s heading
, speed, and altitude.
The aircraft’s speed will be measured to the nearest knot. The aircraft’s speed will be maintained
within the maximum and minimum limits per references i. through j.
The aircraft’s altitude will be measured to the nearest foot. The aircraft’s altitude will be main-
tained within the maximum and minimum limits per references i. through j.

FR4: The aircraft shall be capable of maneuvering by changing its heading , speed and altitude
as ordered by the operator through heading changes, speed changes, and altitude changes.
Heading changes will be according to references b and i. through j.
Speed changes will be according to maximum and minimum limitations per references h. through j.
Altitude changes will be according to the employed climb and dive characteristics, including max-
imum and minimum limitations, per references i. through j.

5.3 IFF (IDENTIFICATION FRIEND OR FOE) SYSTEM

58

5.3.1 IFF INTERROGATOR/RECEIVER
Satisfaction: Figure 7 State 2
FR1: The operator will possess the capability to turn the interrogator “on” or “off”.
If “off” the interrogator will not interrogate .
If “on” the interrogator will interrogate in all modes of interrogation.
Note: The Interrogator/Receiver will be referred to simply as the Interrogator. Verification will be
achieved by comparing the individual entity information with the response information.

FR2: The Interrogator’s received information will be by mode and code.

5.3.2 IFF TRANSPONDER

FR1: The operator will possess the capability to turn the transponder “on” or “off”.
If “off” the transponder will not respond to interrogation .
If “on” the transponder will respond to interrogation , replying in all modes set “on” for reply.

FR3: The transponder will reply by individual mode and code, for each mode set to “on” for re-
sponse.

FR4: Interrogation and response will consider a maximum range limitation, i.e. transponder
equipped entities beyond maximum range will not respond to interrogations.
Note: For Build NP the maximum interrogation range and maximum transponder range will be the
same; 150 nm.

FR5: Transponder response will consider the line-of-sight horizon limitation, i.e. transponder
equipped entities below the line-of-sight horizon cut-off will not respond to interrogations.

FR6: When the IFF Transponder is “on”, the operator will have the capability to turn individual
modes “on” and “off”.
Modes turned “off” will not respond to interrogations.
Modes turned “on” will respond to interrogations. The response will include the mode and code of
the reply. Since the interrogator always interrogates all modes, all modes shall be capable of re-
plying to the same interrogation; any combination of modes 1, 2, 3/A, C, and 4 shall be permitted.
Note: For Build NP Mode 4 will always be on.

59

Table 2: Traceability Requirements

Functional Requirements States

Ship

FR 1 Figure 5, State 1

FR 3 Figure 5, State 2

FR 4 Figure 5, State 3,4

Aircraft

FR 1 Figure 10, State 1

FR 3 Figure 10, State 2

FR 4 Figure 10, State 2, 3

IFF Interrogator

FR 1 Figure 13, State 1,2

FR 2 Figure 13, State 3,4

IFF Transponder

FR 1 Figure 18, States 1, 2

FR 3 Figure 18, State 3, 4
Figure 23, State 1,2, 3, 4

FR 4 Figure 18, State 3

FR 5 Figure 21, State 3

FR 6 Figure 18, State 1

60

6.0 NOTES.
Acronyms

ALSP Aggregate Level Simulation Protocol

ASTAB Automatic Status Board

ADFD Action Data Flow Diagram

C4I Command, Control, Communications, Computers and Intelligence

CECOM US Army Communications-Electronics Command

COTS Commercial-Off-The-Shelf

CSCI Computer Software Configuration Item

DBDD Database Design Description

DCI DIS/ALSP Communications Interface

DIS Distributed Interactive Simulation

DSI Defense Simulation Internet

FMS Force Modeling and Simulation/C4I

GOTS Government-Off-The-Shelf

GUI Graphical User Interface

HPC High-Performance Computing

HSI Human-System Integration

HCI Human Computer Interface

HCI-U HCI CSCI to User

HWCI Hardware Configuration Item

IDD Interface Design Description

ISO International Standards Organization

JMSS JSIMS Maritime Software Segment

JPO Joint Programs Office

JSIMS Joint Simulation System

LAN Local Area Network

61

M&S Modeling and Simulation

MVC Model-View-Controller

NCCOSC Naval Command, Control and Ocean Surveillance Center

NRaD NCCOSC RDTE DIV

NTDS Naval Tactical Data System

OO Object-Oriented

OOA Object-Oriented Analysis

OOD Object-Oriented Design

OOT Object-Oriented Technology

OSI Open Systems Interconnection

PDES Parallel Discrete Event Simulation

PDU Protocol Data Unit

PIP Project Implementation Plan

SDD Software Design Description

SM Simulation Model

SM-DCI SM CSCI to DCI CSCI

SM-HCI SM CSCI to HCI CSCI

SPEEDES Synchronous Parallel Emulation Environment for Discrete Event Simulation

SPP Scaleable Parallel Processor

SSDD System/Subsystem Design Description

WAN Wide Area Network

62

7.0 APPENDIXES.

Appendix A

| |

| Object and Attribute Descriptions |
|______________________________________|

 Paradigm: shlaer_m
 Project: JMSS NP
 Date: Wed Apr 23 09:16:13 1997

 Output File: obj_desc.txt

===
1. Aircraft (AC)

 Aircraft (AC ID, Type, Current Vector, carries, Is Detected By, Ordered Vector, Climb
Vector, Descent Vector, Accel Vector, Position Time, Max Speed, Min Speed)

 Identifiers:

 Description:
 This is the class for aircraft.

1.1. Aircraft.AC ID

 Description:
 The AC tail number is used for the ID.

 Data_Type: AC_ID

1.2. Aircraft.Type

 Description:
 The AC sub-type (Red or FA-18).

 Data_Type: AC_type

1.3. Aircraft.Current Vector

 Description:
 The AC location (Lat, Long), altitude, heading and speed.

 Data_Type: vector

1.4. Aircraft.carries

 Description:

 Data_Type: Boolean

1.5. Aircraft.Is Detected By

 Description:

63

 Data_Type: Boolean

1.6. Aircraft.Ordered Vector

 Description:
 The AC's desired (ordered) heading, speed, or altitude.

 Data_Type: vector

1.7. Aircraft.Climb Vector

 Description:
 A vector describing the speed and rate of a climb.

 Data_Type: Climb Vector

1.8. Aircraft.Descent Vector

 Description:
 A vector describing the speed and rate of a descent. (All values are positive).

 Data_Type: Climb Vector

1.9. Aircraft.Accel Vector

 Description:
 The Acel_a and Acel_b parameters. Negative numbers are decelerations.

 Data_Type: Accel Vector

1.10. Aircraft.Position Time

 Description:
 The time (i.e. 1520) at which the position is correct.

 Data_Type: Time

1.11. Aircraft.Max Speed

 Description:
 The AC's maximum speed.

 Data_Type: int

1.12. Aircraft.Min Speed

 Description:
 The AC's minimum speed.

 Data_Type: int

===
2. Aircraft Data ()

 Aircraft Data ()

 Identifiers:

64

 Description:

===
3. Aircraft ID List ()

 Aircraft ID List ()

 Identifiers:

 Description:

===
4. Blue Transponder ()

 Blue Transponder ()

 Identifiers:

 Description:
 The IFF Transponder on an AC.

===
5. Current Time ()

 Current Time ()

 Identifiers:

 Description:

===
6. End of Simulation ()

 End of Simulation ()

 Identifiers:

 Description:

===
7. FA-18 (AC-US)

 FA-18 ()

 Identifiers:

 Description:
 The friendly AC.

===
8. IFF Interrogator (IFF-I)

 IFF Interrogator (ID, OnOff State, is onboard, interrogates, updates)

65

 Identifiers:

 Description:
 This is the IFF Interrogator object.

8.1. IFF Interrogator.ID

 Description:
 The IFF Interrogator uses the platform object ID as its own ID.

 Data_Type:

8.2. IFF Interrogator.OnOff State

 Description:
 This is the power on/off state for the IFF Interrogator.

 Data_Type: Boolean

8.3. IFF Interrogator.is onboard

 Description:

 Data_Type:

8.4. IFF Interrogator.interrogates

 Description:

 Data_Type:

8.5. IFF Interrogator.updates

 Description:

 Data_Type:

===
9. IFF Interrogator Data ()

 IFF Interrogator Data ()

 Identifiers:

 Description:

===
10. IFF Transponder (IFF-T)

 IFF Transponder (ID, responds to, is onboard, Type, OnOff State, Reply List, Modes)

 Identifiers:

 Description:
 The Transponder part of the IFF.

66

10.1. IFF Transponder.ID

 Description:
 The Transponder box ID number.

 Data_Type: IFF_ID

10.2. IFF Transponder.responds to

 Description:

 Data_Type: Boolean

10.3. IFF Transponder.is onboard

 Description:

 Data_Type: Boolean

10.4. IFF Transponder.Type

 Description:
 The type of IFF Transponder (Blue, Red, Ship).

 Data_Type: IFF Transponder

10.5. IFF Transponder.OnOff State

 Description:
 Tells whether this Transponder is on or off.

 Data_Type: Boolean

10.6. IFF Transponder.Reply List

 Description:
 Provides the data structure of the Transponder reply.

 Data_Type: IFF Reply

10.7. IFF Transponder.Modes

 Description:
 This data structure tells which modes are on.

 Data_Type: IFF Modes

===
11. IFF Transponder Data ()

 IFF Transponder Data ()

 Identifiers:

 Description:

67

===
12. IFF-I Data ()

 IFF-I Data ()

 Identifiers:

 Description:

===
13. Red A/C (AC-R)

 Red A/C ()

 Identifiers:

 Description:
 The enemy AC.

===
14. Red Transponder ()

 Red Transponder ()

 Identifiers:

 Description:
 The IFF Transponder on a Red AC.

===
15. Set AC Timer ()

 Set AC Timer ()

 Identifiers:

 Description:

===
16. Set Done Timer ()

 Set Done Timer ()

 Identifiers:

 Description:

===
17. Set IFFI Timer ()

 Set IFFI Timer ()

 Identifiers:

 Description:

68

===
18. Ship (S)

 Ship (Ship ID, Current Vector, Detects, Is Detected By, Contains, Creates, Ordered
Vector, Position Time, Max Speed, Min Speed, Acceleration, Slow Maneuver Speed, Max Rudder)

 Identifiers:

 Description:
 This is the class for ships.

18.1. Ship.Ship ID

 Description:
 The USS Naval number (hull number).

 Data_Type: shipID

18.2. Ship.Current Vector

 Description:
 The current location (Lat, Long), heading (degrees), rudder angle, and speed of the
ship.

 Data_Type: vector

18.3. Ship.Detects

 Description:

 Data_Type: Boolean

18.4. Ship.Is Detected By

 Description:

 Data_Type: Boolean

18.5. Ship.Contains

 Description:

 Data_Type: Boolean

18.6. Ship.Creates

 Description:

 Data_Type: Boolean

18.7. Ship.Ordered Vector

 Description:

69

 The ship's desired heading and speed.

 Data_Type: vector

18.8. Ship.Position Time

 Description:
 The time (military i.e. 1635) that the current position is valid.

 Data_Type: Time

18.9. Ship.Max Speed

 Description:
 Maximum ship speed (knots).

 Data_Type: int

18.10. Ship.Min Speed

 Description:
 The ship minimum speed (knots).

 Data_Type: int

18.11. Ship.Acceleration

 Description:
 The ship's current acceleration (deceleration is by a minus sign).

 Data_Type: real

18.12. Ship.Slow Maneuver Speed

 Description:
 The ship's speed (kknots) at which it performs "Slow Maneuvering".

 Data_Type: int

18.13. Ship.Max Rudder

 Description:
 The ship;s maximum allowed rudder angle.

 Data_Type: int

===
19. Ship Data ()

 Ship Data ()

 Identifiers:

 Description:

===
20. Ship ID List ()

70

 Ship ID List ()

 Identifiers:

 Description:

===
21. Ship Store ()

 Ship Store ()

 Identifiers:

 Description:

===
22. Ship Transponder ()

 Ship Transponder ()

 Identifiers:

 Description:
 The IFF Transponder on a ship.

===
23. Track (T)

 Track (Track ID, Ship ID, Target Vector, IFF Mode, Track Status, Target Type, Target ID,
Is Updated By, Is Created By)

 Identifiers:

 Description:
 The tracks of objects (both AC and ships) maintained by each ship.

23.1. Track.Track ID

 Description:

 Data_Type: int

23.2. Track.Ship ID

 Description:
 The USS Naval ship number.

 Data_Type: shipID

23.3. Track.Target Vector

 Description:
 A data construct that includes the location (including altitude), the heading and the
speed.

 Data_Type: vector

71

23.4. Track.IFF Mode

 Description:
 The current IFF mode setting, or OFF if the IFF is not in one of the operational modes.

 Data_Type: iff_mode

23.5. Track.Track Status

 Description:
 The current status of the track is an enumerated item that describes if the target is
identified, friendly, AC ID, or unknown..

 Data_Type: ID_status

23.6. Track.Target Type

 Description:
 The type (AC, ship) of the target. The type may include the sub-type (Red AC, FA-18)
if known.

 Data_Type: target_type

23.7. Track.Target ID

 Description:
 The ID of the target (if provided by the IFF), such as the AC tail number or the ship
USS Naval number.

 Data_Type: targetID

23.8. Track.Is Updated By

 Description:

 Data_Type: Boolean

23.9. Track.Is Created By

 Description:

 Data_Type: Boolean

===
24. Track Data ()

 Track Data ()

 Identifiers:

 Description:

72

 Appendix B

| |

| Object Event List |
|______________________________________|

 Paradigm: shlaer_m
 Project: JMSS NP
 Date: Wed Apr 23 09:14:06 1997

 Output File: OEL_daves-np.txt

Event Name |Event Data |Source |Destination
========================|========================|========================|======================
==|
AC3 | |Aircraft
|asd |
 | |Aircraft |AC Vector
Reporting |
 | |Aircraft |Aircraft
Flying |
 | |Aircraft |Initializing
Aircraft |
 | |Aircraft |End of
Simulation |
------------------------|------------------------|------------------------|----------------------
--|
Sim2 | |Aircraft
|asd |
 | |Aircraft |AC Vector
Reporting |
 | |Aircraft |Aircraft
Flying |
 | |Aircraft |Initializing
Aircraft |
 | |Aircraft |End of
Simulation |
------------------------|------------------------|------------------------|----------------------
--|
AC9 | |Aircraft
|asd |
 | |Aircraft |AC Vector
Reporting |
 | |Aircraft |Aircraft
Flying |
 | |Aircraft |Initializing
Aircraft |
 | |Aircraft |End of
Simulation |
------------------------|------------------------|------------------------|----------------------
--|
AC2 | |Aircraft
|asd |
 | |Aircraft |AC Vector
Reporting |
 | |Aircraft |Aircraft
Flying |
 | |Aircraft |Initializing

73

Aircraft |
 | |Aircraft |End of
Simulation |
------------------------|------------------------|------------------------|----------------------
--|
IFF0 | |IFF Interrogator |Interrogator
Off |
 | |IFF Interrogator
|Idle |
 | |IFF Interrogator |Send
Challenges |
 | |IFF Interrogator |Evaluate
Responses |
------------------------|------------------------|------------------------|----------------------
--|
Done | |IFF Interrogator |Interrogator
Off |
 | |IFF Interrogator
|Idle |
 | |IFF Interrogator |Send
Challenges |
 | |IFF Interrogator |Evaluate
Responses |
 | |IFF Transponder |Transponder
Off |
 | |IFF Transponder |Respond to IFF
Interroga|
 | |IFF Transponder
|Idle |
 | |IFF Transponder |Set
Mode |
------------------------|------------------------|------------------------|----------------------
--|
IFF5 | |IFF Transponder |Transponder
Off |
 | |IFF Transponder |Respond to IFF
Interroga|
 | |IFF Transponder
|Idle |
 | |IFF Transponder |Set
Mode |
------------------------|------------------------|------------------------|----------------------
--|
IFF2 | |IFF Transponder |Transponder
Off |
 | |IFF Transponder |Respond to IFF
Interroga|
 | |IFF Transponder
|Idle |
 | |IFF Transponder |Set
Mode |
------------------------|------------------------|------------------------|----------------------
--|
IFF6 | |IFF Transponder |Transponder
Off |
 | |IFF Transponder |Respond to IFF
Interroga|
 | |IFF Transponder
|Idle |
 | |IFF Transponder |Set
Mode |
------------------------|------------------------|------------------------|----------------------
--|

74

Appendix C

| |

| Relationship Report |
|______________________________________|

 Paradigm: shlaer_m
 Project: JMSS NP
 Date: Wed Apr 23 08:54:39 1997

 Output File: RD_daves-np.txt

1.
==
R5 is a relation between the following classes:
 Class1: Aircraft
 with Role Name: is onboard
 Class2: IFF Transponder
 with Role Name: carries
 Has the following Cardinality: EXACTLY ONE:EXACTLY ONE

 Description: The relationship between an AC and its onboard IFF
Transponder. Each AC has onboard one and only one transponder.

--

2.
==
 : Aircraft is a superclass of: FA-18
--

3.
==
AC Type : Aircraft is a superclass of: Red A/C
--

4.
==
R4 is a relation between the following classes:
 Class1: IFF Interrogator
 with Role Name: responds to
 Class2: IFF Transponder
 with Role Name: interrogates
 Has the following Cardinality: MANY:MANY CONDITIONAL

 Description:

--

5.
==

75

 : IFF Transponder is a superclass of: Blue Transponder
--

6.
==
Transponder Type : IFF Transponder is a superclass of: Red Transponder
--

7.
==
 : IFF Transponder is a superclass of: Ship Transponder
--

8.
==
R3 is a relation between the following classes:
 Class1: Ship
 with Role Name: is onboard
 Class2: IFF Transponder
 with Role Name: Contains
 Has the following Cardinality: EXACTLY ONE:EXACTLY ONE

 Description: The relationship of a ship to its onboard IFF
Transponder. Each ship has one and only one IFF Transponder.

--

9.
==
 is a relation between the following classes:
 Class1: Ship
 with Role Name: undefined
 Class2: Ship
 with Role Name: undefined
 Has the following Cardinality: EXACTLY ONE:EXACTLY ONE

 Description:

--

10.
==
R7 is a relation between the following classes:
 Class1: Ship
 with Role Name: Is Created By
 Class2: Track
 with Role Name: Creates
 Has the following Cardinality: EXACTLY ONE:MANY CONDITIONAL

 Description: This is the relationship between a Ship and Track(s).

--

11.

76

==
R2 is a relation between the following classes:
 Class1: Ship
 with Role Name: is onboard
 Class2: IFF Interrogator
 with Role Name: Contains
 Has the following Cardinality: EXACTLY ONE:EXACTLY ONE

 Description:

--

12.
==
identifies A/C by is a relation between the following classes:
 Class1: Track
 with Role Name: undefined
 Class2: Ship
 with Role Name: undefined
 Has the following Cardinality: EXACTLY ONE:EXACTLY ONE

 Description:

--

13.
==
is identified by is a relation between the following classes:
 Class1: Track
 with Role Name: undefined
 Class2: Aircraft
 with Role Name: undefined
 Has the following Cardinality: EXACTLY ONE:EXACTLY ONE

 Description:

--

